The equation ${\sec ^2}\theta = \frac{{4xy}}{{{{(x + y)}^2}}}$ is only possible when

  • [IIT 1966]
  • A

    $x = y$

  • B

    $x < y$

  • C

    $x > y$

  • D

    None of these

Similar Questions

Find the radian measures corresponding to the following degree measures:

$240^{\circ}$

If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then

If $\tan \theta = \frac{{20}}{{21}},$ cos$\theta$ will be

Prove that: $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$

Find the value of $\cos \left(-1710^{\circ}\right)$.