Find the degree measure of the angle subtended at the centre of a circle of radius $100 \,cm$ by an arc of length $22\, cm$ ( Use $\pi=\frac{22}{7}$ ).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that in a circle of radius $r$ unit, if an are of length $l$ unit subtends an angle $\theta$ radian at the centre, then

$\theta=\frac{1}{r}$

Therefore, for $r=100 \,cm , l=22 \,cm ,$ we have

$\theta=\frac{22}{100}$ radian

$=\frac{180}{\pi} \times \frac{22}{100}$ degree

$=\frac{180 \times 7 \times 22}{22 \times 100}$ degree

$=\frac{126}{10}$ degree

$=12 \frac{3}{5}$ degree

$=12^{\circ} 36^{\prime} \quad \quad\left[1^{\circ}=60^{\prime}\right]$

Thus, the required angle is $12^{\circ} 36^{\prime}$

Similar Questions

If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is

The minute hand of a watch is $1.5 \,cm$ long. How far does its tip move in $40$ minutes? ( Use $\pi=3.14$ ).

Find the radian measures corresponding to the following degree measures:

$240^{\circ}$

If $0 < x < \pi $ and $\cos x + \sin x = \frac{1}{2}$,then $tan \,x$ is  

  • [AIEEE 2006]

The equation ${\sec ^2}\theta = \frac{{4xy}}{{{{(x + y)}^2}}}$ is only possible when

  • [IIT 1966]