$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + ..... + \cos 180^\circ = $
$0$
$1$
$-1$
$2$
Find the values of other five trigonometric functions if $\cot x=\frac{3}{4}, x$ lies in third quadrant.
Prove that:
$\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$
Find the value of the trigonometric function $\sin \left(-\frac{11 \pi}{3}\right)$
If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b,$ then ${({b^2} - 1)^2}({a^2} + 4)$ is equal to
If $\sin {\theta _1} + \sin {\theta _2} + \sin {\theta _3} = 3,$ then $\cos {\theta _1} + \cos {\theta _2} + \cos {\theta _3} = $