${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $

  • A

    $5\sqrt 2 $

  • B

    $3\sqrt 2 $

  • C

    $2\sqrt 3 $

  • D

    $0$

Similar Questions

Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.

The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is

  • [KVPY 2021]

If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $

For $x \ne 0,{\left( {{{{x^l}} \over {{x^m}}}} \right)^{({l^2} + lm + {m^2})}}$${\left( {{{{x^m}} \over {{x^n}}}} \right)^{({m^2} + nm + {n^2})}}{\left( {{{{x^n}} \over {{x^l}}}} \right)^{({n^2} + nl + {l^2})}}=$

The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is