किसी क्षेत्र में विधुत क्षेत्र को इस प्रकार दर्शाया गया है- $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{ i }+\frac{4}{5} E _{0} \hat{ j }\right) \frac{ N }{ C }$ है। $0.2\, m ^{2}$ क्षेत्रफल के आयताकार पष्ठ $\left( y - z\right.$ तल के समान्तर) और $0.3 \,m ^{2}$ के पष्ठ $( x - z$ तल के समान्तर $)$ से गुजरने वाले दिए गये क्षेत्र के फ्लक्स का अनुपात $a : b$ है। यहाँ $a =\ldots$ है। [यहाँ $\hat{ i }, \hat{ j }$ और $\hat{ k }$ क्रमशः $x , y$ और $z$-अक्ष के अनुदिश एकांक सदिश है]

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $1$

Similar Questions

दो अनन्त समतल और समान्तर चादरों के बीच की दूरी $d$ है। उन पर बराबर एवं विपरीत आवेश का पृष्ठ घनत्व $\sigma $ है। चादरों के बीच में किसी बिन्दु पर वैद्युत क्षेत्र की तीव्रता होगी

एक घन के केन्द्र पर जिसकी प्रत्येक भुजा की लम्बाई $L$ है एक आवेश $q$ रखा है। घन से निर्गत विधुत फ्लक्स होगा:

  • [AIPMT 1996]

चित्र में विध्यूत क्षेत्र अवयव $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0$ है, जिसमें $\alpha=800 \,N / C m ^{1 / 2}$ है। $(a)$ घन से गुजरने वाला फ्लक्स, तथा $(b)$ घन के भीतर आवेश परिकलित कीजिए। $a=0.1 \,m$ मानिए

एक आवेश कण स्वतंत्र गति कर सकता है, तो वह गति करेगा

  • [IIT 1979]

आधार त्रिज़्या $R$ एवं ऊँचाई $h$ वाला एक शंकु आधार के समान्तर एकसमान विद्युत क्षेत्र $\overrightarrow{ E }$ में स्थित है। शंकु में प्रवेश करने वाला विद्युत फ्लक्स है

  • [JEE MAIN 2014]