किसी क्षेत्र में विधुत क्षेत्र को इस प्रकार दर्शाया गया है- $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{ i }+\frac{4}{5} E _{0} \hat{ j }\right) \frac{ N }{ C }$ है। $0.2\, m ^{2}$ क्षेत्रफल के आयताकार पष्ठ $\left( y - z\right.$ तल के समान्तर) और $0.3 \,m ^{2}$ के पष्ठ $( x - z$ तल के समान्तर $)$ से गुजरने वाले दिए गये क्षेत्र के फ्लक्स का अनुपात $a : b$ है। यहाँ $a =\ldots$ है। [यहाँ $\hat{ i }, \hat{ j }$ और $\hat{ k }$ क्रमशः $x , y$ और $z$-अक्ष के अनुदिश एकांक सदिश है]

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $1$

Similar Questions

एक खोखले बेलन के भीतर $q$ कूलॉम का आवेश स्थित है। यदि चित्रानुसार वक्र तल $B$ से सम्बद्ध वैधुत अभिवाह वोल्ट-मी मात्रकों में $\phi$ हो तो समतल तल $A$ से सम्बद्ध वोल्ट-मी मात्रकों में अभिवाह होगा-

  • [AIIMS 2008]

धातु का बना एक ठोस गोला एक समांगी (Uniform) विद्युत क्षेत्र में रखा हुआ है। चित्र में दिखाई गई रेखाओं में से सही बल रेखा है

  • [IIT 1996]

किसी बिंदु आवेश के कारण उस बिंदु को केंद्र मानकर खींचे गए $10\, cm$ त्रिज्या के गोलीय गाउसीय पृष्ठ पर वैध्युत फ्लक्स $-1.0 \times 10^{3} Nm ^{2} / C$ । $(a)$ यदि गाउसीय पृष्ठ की शिज्या दो गुनी कर दी जाए तो पृष्ठ से कितना फ्लक्स गुजरेगा? $(b)$ बिंदु आवेश का मान क्या है?

मान लीजिए कि एक बिंदु आवेश $q$ के द्वारा $r$ दूरी पर उत्पन्न विद्युतीय क्षेत्र $E$ व्युत-वर्गानुपाति (inverse square) न हो के बल्कि व्युत-घनानुपाति (inverse cubic) है | जैसे कि $\vec{E}=k \frac{q}{r^3} \hat{r}$ जहाँ $k$ एक नियतांक है | निम्नलिखित दो कथनों पर विचार करें ।

$(i)$ आवेश को परिबद्ध (enclosing) करने वाले एक गोलीय पृष्ठ से निकलने वाले विद्युत अभिवाह (flux), $\phi=q_{\text {enclosed }} / \epsilon_0$

$(ii)$ एकसमान रूप से आवेशित खोखले कोष के अन्दर स्थित आवेश पर एक बल लगेगा ।

सही विकल्प का चयन करें

  • [KVPY 2017]

$(a)$ स्थिरवैध्यूत क्षेत्र रेखा एक संतत वक्र होती है अर्थात कोई क्षेत्र रेखा एकाएक नह्है टूट सकती। क्यों?

$(b)$ स्पष्ट कीजिए कि दो क्षेत्र रेखाएँ कभी भी एक-दूसरे का प्रतिच्छेदन क्यों नहीं करती?