આપેલ વિસ્તારમાં વિદ્યુતક્ષેત્ર $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{i}+\frac{4}{5} E _{0} \hat{j}\right) \frac{ N }{ C }$ વડે આપવામાં આવે છે. $(y-z$ સમતલને સમાંતર) $0.2 \,m^ 2$ ક્ષેત્રફળ ધરાવતી અને $(x-y$ સમતલને સમાંતર) $0.3 \,m^2$ ક્ષેત્રફળ ધરાવતી લંબચોરસ સપાટીમાંથી બતાવેલ ક્ષેત્ર પસાર થતાં મળતા ફ્લક્સનો ગુણોત્તર $a:b$ છે, જ્યાં $a=...........$ છે.
[ અત્રે $\hat{i}, \hat{j}$ અને $\hat{k}$ એ અનુક્રમે $x, y$ અને $z-$ અક્ષોની દિશામાં એકમ સદિશ છે.]
$2$
$3$
$4$
$1$
એક લાંબા પોલા નળાકારના ઉપરના અડધા ભાગમાં ઘન સપાટી વિદ્યુતભાર $\sigma $ અને નીચેના અર્ધ ભાગમાં ઋણ સપાટી-વિદ્યુતભાર $-$$\sigma $ રહેલ છે.નળાકારને ફરતે વિદ્યુતક્ષેત્ર રેખાઆકૃતિ ______ જેવી દેખાશે. (આકૃતિ રેખાકૃતિ સૂચવે છે અને તેઓ એક જ સ્કેલ પર દોરેલી નથી.)
આકૃતિમાં દર્શાવ્યા પ્રમાણે બોક્સમાથી $\overrightarrow{\mathrm{E}}=4 \mathrm{x} \hat{\mathrm{i}}-\left(\mathrm{y}^{2}+1\right) \hat{\mathrm{j}}\; \mathrm{N} / \mathrm{C}$ જેટલું વિદ્યુતક્ષેત્ર પસાર થાય છે $A B C D$ અને $BCGF$ સપાટીમાંથી પસાર થતું ફ્લક્સ $\phi_{I}$ અને $\phi_{\mathrm{II}}$ હોય તો તેમનો તફાવત $\phi_{\mathrm{I}}-\phi_{\mathrm{II}}$ ($\mathrm{Nm}^{2} / \mathrm{C}$ માં) કેટલો મળે?
$q$ વિદ્યુતભાર સમઘનના કેન્દ્ર પર મૂકેલો છે. સમઘનની કોઈપણ પૃષ્ઠમાંથી કેટલું વિદ્યુત ફ્લક્સ પસાર થાય?
$+ q$ વિદ્યુતભાર $L$ લંબાઈના સમઘનના કેન્દ્ર પર મૂકેલો છે, તો સમઘનમાંથી કેટલું ફ્લક્સ પસાર થાય?
વિધુત ફલક્સની સમજૂતી આપો.