વિઘેય $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)} $ નો પ્રદેશ ........ છે.
$(-\infty, 1) \cup(2, \infty)$
$(2, \infty)$
$\left[-\frac{1}{2}, 1\right) \cup(2, \infty)$
$\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$
જો $f(x + ay,\;x - ay) = axy$, તો $f(x,\;y) =$
જો વિધેય $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ નો પ્રદેશ $(\alpha, \beta) \cup(\gamma, \delta]$ હોય, તો $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)=......$
વિધેય $f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ નુ આવર્તમાન મેળવો.
ઉકેલો $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
ધારો કે $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ એ નીચે આપેલ મુજબ વ્યાખ્યાયિત છે.
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 $ તો $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ ની કિમંત મેળવો.