ધારો કે $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ એ નીચે આપેલ મુજબ વ્યાખ્યાયિત છે.
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 $ તો $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ ની કિમંત મેળવો.
$\operatorname{cosec}^{2}(1) \operatorname{cosec}(21) \sin (20)$
$\sec ^{2}(1) \sec (21) \cos (20)$
$\operatorname{cosec}^{2}(21) \cos (20) \cos (2)$
$\sec ^{2}(21) \sin (20) \sin (2)$
જો વિધેય $g(x)$ એ $[-1, 1]$ મા વ્યાખિયાયિત છે અને સમબાજુ ત્રિકોણના બે શિરોબિંદુઓ $(0, 0)$ અને $(x, g(x))$ તથા તેનુ ક્ષેત્રફળ $\frac{\sqrt 3}{4}$ હોય તો $g(x)$ =
ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$
નીચેનામાંથી ક્યુ સાચુ છે ?
વિધેય $f(x) = \;[x]\; - x$ નો વિસ્તાર મેળવો.
જો વિધેય $f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ નો પ્રદેશ $(\alpha, \beta]$ હોય, તો $5 \beta-4 \alpha$ નું મૂલ્ય___________ છે.