दीर्घवृत्त के नाभियों के बीच की दूरी 16 तथा उत्केन्द्रता $\frac{1}{2}$ है। दीर्घवृत्त के दीर्घाक्ष की लम्बाई है

  • A

    $8$

  • B

    $64$

  • C

    $16$

  • D

    $32$

Similar Questions

दीर्घवृत्तों (Ellipses) $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ और आयतों (rectangles) $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ के संग्रहों को निम्न प्रकार से परिभाषित करे :

$E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$

$R _1$ : अधिकतम क्षेत्र (largest area) का आयत, जिसकी भुजाएं अक्षों (axes) के समान्तर है, और जो $E _1$ में अंतस्थित (inscribed) है ;

$E _{ n }$ : अध्कितम क्षेत्र वाला दीर्घवृत्त $\frac{ x ^2}{ a _{ n }^2}+\frac{ y ^2}{ b _{ n }^2}=1$ जो $R _{ n -1}, n >1$ में अंतर्स्थित है ;

$R _{ n }$ : अध्कितम क्षेत्र का आयत, जिसकी भुजाएं अक्षों के समान्तर है, और जो $E _{ n }, n >1$ में अंतस्थित है। तब निम्न में से कौनसा (से) विकल्प सही है (हैं) ?

$(1)$ $E _{18}$ और $E _{19}$ की उत्केन्द्रतायें (eccentricities) समान नहीं है

$(2)$ $E _{ o }$ में केन्द्र से एक नाभि (focus) की दूरी $\frac{\sqrt{5}}{32}$ है

$(3)$ $E _9$ के नाभिलम्ब (latus rectum) की लम्बाई $\frac{1}{6}$ है

$(4)$ प्रत्येक पूर्णांक $N$ के लिए $\sum_{ n =1}^{ N }\left( R _{ n }\right.$ का क्षेत्रफल $)<24$ है

  • [IIT 2019]

दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ तथा नाभियाँ $( \pm {\rm{ }}1,\;0)$ हैं, है  

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$

यदि रेखा $y = 2x + c$ दीर्घवृत्त  $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $

उस दीर्घवृत्त का समीकरण जिसके शीर्ष $( \pm 5,\;0)$ तथा नाभियाँ  $( \pm 4,\;0)$ हैं, होगा