$\frac{ B ^{2}}{2 \mu_{0}}$, जहाँ $B$ चुम्बकीय क्षेत्र है और $\mu_{0}$ निर्वात की चुम्बकीय पागम्यता है, की विमायें हैं।

  • [JEE MAIN 2020]
  • A

    $M L^{-1} T^{-2}$

  • B

    $\mathrm{ML}^{2} \mathrm{T}^{-1}$

  • C

    $\mathrm{ML} \mathrm{T}^{-2}$

  • D

    $\mathrm{ML}^{2} \mathrm{T}^{-2}$

Similar Questions

दो राशियों $A$ तथा $B$ की विमायें भिन्न है। निम्न में से किस गणितीय संक्रिया की भौतिक सार्थकता हैं

विधुतचुम्बकीय सिद्धांत के अनुसार विद्युत् और चुम्बकीय परिघटनाओं (phenomena) के बीच संबंध होता है। इसलिए विधुत और चुम्बकीय राशियों के विमाओं (dimensions) में भी संबंध होने चाहिए। निम्नलिखित प्रश्नों में $[E]$ और $[B]$ क्रमशः विधुत और चुम्बकीय क्षेत्रों की विमाओं को दर्शाते हैं, जबकि [ $\left.\epsilon_0\right]$ और $\left[\mu_0\right]$ क्रमशः मुक्त आकाश (free space) की पराविधुटांक (permittivity) और चुम्बकशीलता (permeability) की विमाओं को दर्शाते हैं। $[L]$ और $[T]$ क्रमशः लम्बाई और समय की विमायें हैं। सभी राशियाँ SI मात्रकों (units) में दी गयी हैं ।

($1$) $[E]$ और $[B]$ के बीच में संबंध है

$(A)$ $[ E ]=[ B ][ L ][ T ]$  $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$  $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$  $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$

($2$) $\left[\epsilon_0\right]$ और $\left[\mu_0\right]$ के बीच में संबंध है

$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$  $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$   $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$  $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

विमीय विश्लेषण की नींव किसके द्वारा रखी गयी

यदि किसी नैनो संधारित्र की धारिता, एक ऐसे मात्रक $u$ में मापी जाय, जो इलेक्ट्रॉन आवेश $e$, बोर-त्रिज्या $a _{0}$, प्लांक स्थिरांक $h$ तथा प्रकाश की चाल $c$ के संयोजन से बना है तो

  • [JEE MAIN 2015]

विभानतार $V$, विधुत धारा $I$, पराविधुतांक  $\varepsilon_0$, पारगम्यता $\mu_0$ तथा प्रकाश की चाल $c$ को मिलाकर विमीय रूप से सही विकल्प है (हैं)

$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$

  • [IIT 2015]