The dimension of $\frac{\mathrm{B}^{2}}{2 \mu_{0}}$, where $\mathrm{B}$ is magnetic field and $\mu_{0}$ is the magnetic permeability of vacuum, is
$M L^{-1} T^{-2}$
$\mathrm{ML}^{2} \mathrm{T}^{-1}$
$\mathrm{ML} \mathrm{T}^{-2}$
$\mathrm{ML}^{2} \mathrm{T}^{-2}$
Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?
The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m v^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$
If the buoyant force $F$ acting on an object depends on its volume $V$ immersed in a liquid, the density $\rho$ of the liquid and the acceleration due to gravity $g$. The correct expression for $F$ can be