The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is

  • [JEE MAIN 2023]
  • A

    $(\sim r ) \Rightarrow p \wedge q$

  • B

    $(\sim r ) \Rightarrow((\sim p ) \wedge q )$

  • C

    $((\sim p) \vee q) \Rightarrow r$

  • D

    $( p \vee(\sim q )) \Rightarrow(\sim r )$

Similar Questions

Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is

  • [JEE MAIN 2020]

If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is

$(p \to q) \leftrightarrow (q\ \vee  \sim p)$ is 

The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to

  • [JEE MAIN 2023]

If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of  $p$ and  $q$ are respectively .

  • [JEE MAIN 2018]