The converse of the statement $((\sim p) \wedge q) \Rightarrow r$ is
$(\sim r ) \Rightarrow p \wedge q$
$(\sim r ) \Rightarrow((\sim p ) \wedge q )$
$((\sim p) \vee q) \Rightarrow r$
$( p \vee(\sim q )) \Rightarrow(\sim r )$
Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is
If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
$(p \to q) \leftrightarrow (q\ \vee \sim p)$ is
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .