The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
$6$
$7$
$5$
$4$
$\sim (p \vee (\sim q))$ is equal to .......
If $p \Rightarrow (q \vee r)$ is false, then the truth values of $p, q, r$ are respectively
$\left( { \sim \left( {p \vee q} \right)} \right) \vee \left( { \sim p \wedge q} \right)$ is logically equivalent to
Which of the following is a tautology?
$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is