If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
true
false
True if $r$ is false
True if $q$ is true
Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
Negation of the compound proposition : If the examination is difficult, then I shall pass if I study hard
The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to
If $(p\; \wedge \sim r) \Rightarrow (q \vee r)$ is false and $q$ and $r$ are both false, then $p$ is
The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to