Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is
$\sqrt{5}$ is an integer or $5$ is irrational is
$\sqrt{5}$ is not an integer and $5$ is not irrational
$\sqrt{5}$ is an integer and $5$ is irrational
$\sqrt{5}$ is not an integer or $5$ is not irrational
Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement
"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.