Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is
$\sqrt{5}$ is an integer or $5$ is irrational is
$\sqrt{5}$ is not an integer and $5$ is not irrational
$\sqrt{5}$ is an integer and $5$ is irrational
$\sqrt{5}$ is not an integer or $5$ is not irrational
The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
$\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to
Let $p , q , r$ be three statements such that the truth value of $( p \wedge q ) \rightarrow(\sim q \vee r )$ is $F$. Then the truth values of $p , q , r$ are respectively
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.