Negation of the statement : - $\sqrt{5}$ is an integer or $5$ is irrational is

  • [JEE MAIN 2020]
  • A

    $\sqrt{5}$ is an integer or $5$ is irrational is

  • B

    $\sqrt{5}$ is not an integer and $5$ is not irrational

  • C

    $\sqrt{5}$ is an integer and $5$ is irrational

  • D

    $\sqrt{5}$ is not an integer or $5$ is not irrational

Similar Questions

Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement

"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as

  • [JEE MAIN 2015]

The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to

  • [JEE MAIN 2023]

If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively

  • [JEE MAIN 2019]

The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :

  • [JEE MAIN 2021]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]