$\left(2 \mathrm{x}+\frac{1}{\mathrm{x}^7}+3 \mathrm{x}^2\right)^5$ के प्रसार में अचर पद है______.
$1089$
$1080$
$1050$
$1562$
$x$ के घटते घात $(decreasing\,powers)$ में $\left(x^{1 / 2}+\frac{1}{2 x^{1 / 4}}\right)^n$ का प्रसार $(expansion)$ लिखिए. मान लें कि पहले तीन पदों के गुणांकों $(coefficients)$ से अंकगणितीय शंढी $(arithmetic \,progression)$ बनती है। तब प्रसार मे $s$ के पूर्णांक घात $(integer\,powers)$ वालें पदों की संख्य है - -
${\left( {x - \frac{1}{x}} \right)^7}$ के विस्तार में ${x^3}$ का गुणांक है
${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$ के विस्तार में ${x^4}$ का गुणांक है
माना $2^{(\mathrm{x}-2) \log _2 3}$ की बढ़ती घातों में $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$, के द्विपद प्रसार में छठा पद $21$ है। यदि इस प्रसार में दूसरा, तीसरा तथा चौथा द्विपद गुणांक एक $A.P.$ के क्रमशः पहला, तीसरा तथा पाँचवा पद हैं, तो $\mathrm{x}$ के सभी संभव मानों के वर्गों का योग है____________.
$\left(\frac{x}{\cos \theta}+\frac{1}{x \sin \theta}\right)^{16}$ के प्रसार में, यदि $x$ से स्वतंत्र पद का निम्नतम मान $\ell_{1}$ है जब $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ तथा $x$ से स्वतंत्र पद का निम्नतम मान $\ell_{2}$ है जब $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8}$, तो अनुपात $\ell_{2}: \ell_{1}$ बराबर है