${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{32}}$ નો સહગુણક મેળવો.

  • A

    $^{15}{C_4}$

  • B

    $^{15}{C_3}$

  • C

    $^{15}{C_2}$

  • D

    $^{15}{C_5}$

Similar Questions

જો $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ માં $x^9$ નો સહગુણક અને $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ માં $x^{-9}$ નો સહગુણક સરખા હોય,તો $(\alpha \beta)^2=........$

  • [JEE MAIN 2023]

ધારો કે $\left(\sqrt{2^{\log _2}\left(10-3^x\right)}+\sqrt[5]{2^{(x-2) \log _2 3}}\right)^m$ નું દ્રીપદી વિસ્તરણ એ $2^{(x-2) \log _2 3}$ની વધતી ધાતમાં લઈએ,તો તેનું છઠ્ઠું પદ $21$ છે.જો આ દ્રીપદી વિસ્તરણના બીજા,ત્રીજા અને ચોથા પદોના સહગુણકો અનુક્રમે સમાંતર શ્રેણી ણા પ્રથમ,ત્રીજા અને પાંચમાં પદો હોય,તો $x$ની શક્ય તમામ કિમતોના વર્ગોનો સરવાળો $..............$ છે.

  • [JEE MAIN 2023]

${({x^2} - x - 2)^5}$ ના વિસ્તરણમાં ${x^5}$ નો સહગુણક મેળવો.

${\left( {x - \frac{1}{x}} \right)^7}$ ના વિસ્તરણમાં ${x^{3}}$ નો સહગુણક મેળવો.

${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો.

  • [AIEEE 2012]