જો $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ માં $x^9$ નો સહગુણક અને $\left(\alpha x-\frac{1}{\beta x^3}\right)^{11}$ માં $x^{-9}$ નો સહગુણક સરખા હોય,તો $(\alpha \beta)^2=........$
$2$
$4$
$1$
$6$
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
${\left( {2x - \frac{1}{{2{x^2}}}} \right)^{12}}$ ના વિસ્તરણમાં અચળપદ મેળવો.
જો ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ ના વિસ્તરણમાં છઠ્ઠું પદ $5600$ હોય તો $x$ ની કિમત મેળવો
$(1+a)^{n}$ ના વિસ્તરણનાં ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $1: 7 : 42$ છે. $n$ શોધો.
જો $a^3 + b^6 = 2$, હોય તો $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ ના વિસ્તરણમાં અચળ પદ મેળવો જ્યાં $(a > 0, b > 0)$