${(x + 3)^6}$ ના વિસ્તરણમાં ${x^5}$ નો સહગુણક મેળવો.
$18$
$6$
$12$
$10$
$\left(2 x^3-\frac{1}{3 x^2}\right)^5$ ના વિસ્તરણમાં $x^5$ નો સહગુણક $........$ હશે.
જો ${\left( {{x^2} + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં મધ્યમપદ $924{x^6}$ હોય તો $n = $
જો $n$ એ ધન પૂર્ણાંક હોય , તો ${(1 + x)^n}$ ના વિસ્તરણમાં મહતમ પદને મહતમ સહગુણક હોય તો . . . .
${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ ના વિસ્તરણમાં $x^{-5}$ નો સહગુણક મેળવો. જ્યાં $x \ne 0, 1$
$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, માં $x^3$ અને $x^{-13}$ ના સહગુણાકોનો સરવાળો..........................