${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ ના વિસ્તરણમાં $x^{-5}$ નો સહગુણક મેળવો. જ્યાં $x \ne 0, 1$
$1$
$4$
$-4$
$-1$
જો $p$ અને $q$ એ ધન હોય , તો ${(1 + x)^{p + q}}$ ના વિસ્તરણમાં ${x^p}$ અને ${x^q}$ નો સહગુણક મેળવો.
જો ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ ના વિસ્તરણમાં $x^{-2}$ અને $x^{-4}$ ના સહગુણક અનુક્રમે $m$ અને $n$ હોય તો $\frac{m}{n}$ = ...
જો $(1+x)^n$ નાં વિસ્તરણામાં $x^4, x^5$ અને $x^6$ નાં સહગુણકો સમાંતર શ્રણીમાં હોય, તો $n$ નું મહતમ મૂલ્ય..........છે.
બતાવો કે $(1+x)^{2 n}$ ના વિસ્તરણના મધ્યમ પદનો સહગુણક એ $(1+x)^{2 n-1}$ ના વિસ્તરણનાં મધ્યમ પદોના સહગુણકોના સરવાળા જેટલો છે.
$\left(2 x+\frac{1}{x^7}+3 x^2\right)^5$ ના વિસ્તરણમાં અચળ પદ $............$ છે.