$\left(x^4-\frac{1}{x^3}\right)^{15}$ के प्रसार में $x^{18}$ का गुणांक है
$5004$
$5003$
$5002$
$5005$
यदि ${(3 + ax)^9}$ के विस्तार में ${x^2}$ व ${x^3}$ के गुणांक बराबर हों, तो $a$ का मान होगा
${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ के विस्तार में $x$ से स्वतंत्र पद है
यदि ${(1 + x)^{2n + 2}}$ के प्रसार में मध्य पद का गुणांक $p$ है तथा ${(1 + x)^{2n + 1}}$ के प्रसार में मध्य पदों के गुणांक $q$ तथा $r$ हैं, तब
$\left(2^{1 / 3}+\frac{1}{2(3)^{1 / 3}}\right)^{10}$ के द्विपद प्रसार में आरम्भ से $5$ वें तथा अंत से (प्रथम की ओर) $5$ वें पदों का एक अनुपात है
यदि $a$ और $b$ भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि $\left(a^{n}-b^{n}\right)$ का एक गुणनखंड $(a-b)$ है, जबकि $n$ एक धन पूर्णांक है।