यदि ${(3 + ax)^9}$ के विस्तार में ${x^2}$ व ${x^3}$ के गुणांक बराबर हों, तो $a$ का मान होगा
$ - \frac{7}{9}$
$ - \frac{9}{7}$
$\frac{7}{9}$
$\frac{9}{7}$
${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ के विस्तार में $x$ से स्वतंत्र पद होगा
$\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824}$ के प्रसार में पूर्णांक पदों की संख्या है ..................
माना $\frac{1}{\sqrt[4]{3}}$ की बढ़ती घातों में $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^n$ के द्विपद प्रसार में आरंभ से पाँचवें पद का अन्त से पाँचवें पद से अनुपात $\sqrt[4]{6}: 1$ है। यदि आरंभ से छठा पद $\frac{\alpha}{\sqrt[4]{3}}$ है, तो $\alpha$ बराबर है $...........$
निम्नलिखित के प्रसार में व्यापक पद लिखिए
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ के प्रसार में $13$ वाँ पद ज्ञात कीजिए।
यदि ${(1 + x)^{15}}$ के प्रसार में $(2r + 3)$ वें तथा ${(r - 1)^{th}}$ वें पदों के गुणांक बराबर हैं, तो $r$ का मान है