यदि $a$ और $b$ भिन्न-भिन्न पूर्णांक हों, तो सिद्ध कीजिए कि $\left(a^{n}-b^{n}\right)$ का एक गुणनखंड $(a-b)$ है, जबकि $n$ एक धन पूर्णांक है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b),$ where $k$ is some natural number

It can be written that, $a=a-b+b$

$\therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$

$ = {\,^n}{C_0}{(a - b)^n} + {\,^n}{C_1}{(a - b)^{n - 1}}b +  \ldots  + {\,^n}{C_{n - 1}}(a - b){b^{n - 1}} + {\,^n}{C_n}{b^n}$

$ = {(a - b)^n} + {\,^n}{C_1}{(a - b)^{n - 1}}b +  \ldots  + {\,^n}{C_{n - 1}}(a - b){b^{n - 1}} + {b^n}$

$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+^{n} C_{1}(a-b)^{n-2} b+\ldots+^{n} C_{n-1} b^{n-1}\right]$

$\Rightarrow a^{n}-b^{n}=k(a-b)$

Where, $k = \left[ {{{(a - b)}^{n - 1}} + {\,^n}{C_1}{{(a - b)}^{n - 2}}b +  \ldots  + {\,^n}{C_{n - 1}}{b^{n - 1}}} \right]$ is a natural mumber

This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where $n$ is a positive integer.

Similar Questions

यदि $(1+x)^{34}$ के प्रसार में $(r-5)^{th}$ और$(2 r-1)^{th}$ पदों के गुणांक समान हों $r$ ज्ञात कीजिए।

माना $6 x$ की बढ़ती घातों में $(3+6 x )^{ n }$ के द्विपद प्रसार में $x =\frac{3}{2}$ पर 9 पद का मान अधिकतम होने के लिए, $n$ का निम्नतम मान $n _0$ है। यदि $x ^6$ का गुणांक का $x ^3$ के गुणांक से अनुपात $k$ है, तो $k + n _0$ बराबर है  $.............$

  • [JEE MAIN 2022]

यदि $\left(3^{1 / 2}+5^{1 / 8}\right)^{ n }$ के प्रसार में पूर्णाकीय पदों की संख्या मात्र $33$ है, तो $n$ का न्यूनतम मान है

  • [JEE MAIN 2020]

यदि $A$ और $B$, ${(1 + x)^{2n}}$तथा ${(1 + x)^{2n - 1}}$ के विस्तारों में ${x^n}$ के गुणांक हैं, तब

$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0 $ के प्रसार में $\mathrm{x}^3$ तथा $\mathrm{x}^{-13}$ के गुणांकों का योग है...................

  • [JEE MAIN 2024]