$(1- x )^{101}\left( x ^{2}+ x +1\right)^{100}$ के प्रसार में $x ^{256}$ का गुणांक है 

  • [JEE MAIN 2021]
  • A

    ${-}^{100} \mathrm{C}_{16}$

  • B

    $^{100} \mathrm{C}_{16}$

  • C

    $^{100} \mathrm{C}_{15}$

  • D

    $-{ }^{100} \mathrm{C}_{15}$

Similar Questions

यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :

  • [JEE MAIN 2023]

यदि ${(x + a)^n}$ के विस्तार में विषम पदों का योग $P$ तथा सम पदों का योग $Q$ हो, तो $({P^2} - {Q^2})$ का मान होगा       

${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ होगा 

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, तब  ${C_0} + {C_2} + {C_4} + {C_6} + .....$ का मान होगा

${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ के विस्तार में ${x^r}[0 \le r \le (n - 1)]$ का गुणांक है