${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ के विस्तार में ${x^r}[0 \le r \le (n - 1)]$ का गुणांक है

  • A

    $^n{C_r}({3^r} - {2^n})$

  • B

    $^n{C_r}({3^{n - r}} - {2^{n - r}})$

  • C

    $^n{C_r}({3^r} + {2^{n - r}})$

  • D

    इनमें से कोई नहीं

Similar Questions

$\sum \limits_{\substack{i, j=0 \\ i \neq j}}^{ n }{ }^n C_i{ }^n C_j$ बराबर है :

  • [JEE MAIN 2022]

यदि $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ के प्रसार में $\mathrm{x}^{30}$ का गुणांक $\alpha$ है, तो $|\alpha|$ बराबर है.............

  • [JEE MAIN 2024]

${(x + 2y + 3z)^8}$ के विस्तार में गुणांकों का योग होगा   

यदि ${(1 + x + {x^2})^n}$ के विस्तार में ${x^r}$का गुणांक ${a_r}$ हो, तो ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $

यदि ${(x + y)^n}$ के विस्तार में गुणांकों का योग $4096$ है, तो इसके विस्तार में महत्तम गुणांक का मान होगा  

  • [AIEEE 2002]