दीर्घवृत्त $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ की नाभियों के निर्देशांक हैं
$(1, 2), (3, 4)$
$(1, 4), (3, 1)$
$(1, 1), (3, 1)$
$(2, 3), (5, 4)$
यदि दीर्घवृत्त $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की नाभियाँ व अतिपरवलय $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ की नाभियाँ सम्पाती हों तो ${b^2}$ का मान है
दीर्घवृत्त $9{x^2} + 5{y^2} - 30y = 0$ के दीर्घ अक्ष के सिरों पर खींची गई स्पर्श रेखाओं के समीकरण हैं
एक दीर्घवृत्त बिन्दु $(-3, 1)$ से गुजरता है तथा उसकी उत्केन्द्रता $\sqrt {\frac{2}{5}} $ है। दीर्घवृत्त का समीकरण होगा
यदि रेखा $y = 2x + c$ दीर्घवृत्त $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $
यदि किसी दीर्घवृत्त की उत्केन्द्रता $\frac{5}{8}$ तथा नाभियों के बीच की दूरी $10$ हो, तो उसका नाभिलम्ब होगा