$2 a$ भुजा के समबाहु त्रिभुज का आधार $y-$ अक्ष के अनुदिश इस प्रकार है कि आधार का मध्य बिंदु मूल बिंदु पर है। त्रिभुज के शीर्ष ज्ञात कीजए।
Let $ABC$ be the given equilateral triangle with side $2 a$.
Accordingly, $A B=B C=C A=2 a$
Assume that base $BC$ lies along the $y-$ axis such that the mid-point of $BC$ is at the origin.
i.e., $BO = OC = a ,$ where $O$ is the origin.
Now, it is clear that the coordinates of point $C$ are $(0, a),$ while the coordinates of point $B$ are $(0,-a).$
It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.
Hence, vertex $A$ lies on the $y-$ axis.
On applying Pythagoras theorem to $\Delta$ $AOC$, we obtain
$(A C)^{2}=(O A)^{2}+(O C)^{2}$
$\Rightarrow(2 a)^{2}=(O A)^{2}+a^{2}$
$\Rightarrow 4 a^{2}-a^{2}=(O A)^{2}$
$\Rightarrow(O A)^{2}=3 a^{2}$
$\Rightarrow O A=\sqrt{3} a$
$\therefore$ Coordinates of point $A=(\pm \sqrt{3} a, 0)$
Thus, the vertices of the given equilateral triangle are $(0, a),(0,-a)$, and$(\sqrt{3} a, 0)$ or $(0, a),(0,-a)$, and $(-\sqrt{3} a, 0)$
यदि सरल रेखा $3x + 4y + 15 = 0$ पर कोई दो बिन्दु $A$ व $B$ इस प्रकार हों कि $OA = OB = 9$ इकाई, तो त्रिभुज $OAB$ का क्षेत्रफल है
माना $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}(3,4)$ तथा $(-6,-8)$ एक त्रिभुज के केन्द्रक. परिकेन्द्रक तथा लंबकेन्द्र है। तो बिंदु $P(2 a+3,7 b+5)$ की रेखा $2 x+3 y-4=0$ से, रेखा $\mathrm{x}-2 \mathrm{y}-1=0$ समांतर नापी गई दूरी है।
यदि त्रिभुज $ABC$ की भुजाओं $BC,\,CA$ तथा $AB$ के मध्य बिन्दु क्रमश: $(1, 3), \,(5, 7)$ तथा $(-5, 7)$ हों, तो भुजा $AB$ का समीकरण होगा
उस बिन्दु का बिन्दुपथ जो कि सरल रेखाओं $3x + 4y - 11 = 0$ व $12x + 5y + 2 = 0$ से समान दूरी पर स्थित है एवं मूल बिन्दु के समीप है, है
दर्शाइए कि एक गतिमान बिंदु, जिसकी दो रेखाओं $3 x-2 y=5$ और $3 x+2 y=5$ से दूरीयाँ समान है, का पथ एक रेखा है।