माना $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}(3,4)$ तथा $(-6,-8)$ एक त्रिभुज के केन्द्रक. परिकेन्द्रक तथा लंबकेन्द्र है। तो बिंदु $P(2 a+3,7 b+5)$ की रेखा $2 x+3 y-4=0$ से, रेखा $\mathrm{x}-2 \mathrm{y}-1=0$ समांतर नापी गई दूरी है।

  • [JEE MAIN 2024]
  • A

     $\frac{15 \sqrt{5}}{7}$

  • B

    $\frac{17 \sqrt{5}}{6}$

  • C

    $\frac{17 \sqrt{5}}{7}$

  • D

    $\frac{\sqrt{5}}{17}$

Similar Questions

किसी त्रिभुज के दो शीर्ष $(5, - 1)$ व $( - 2,3)$ हैं। यदि लम्बकेन्द्र मूल बिन्दु हों, तो तीसरे शीर्ष के निर्देशांक हैं

  • [IIT 1979]

माना $A (1,-1)$ तथा $B (0,2)$ दो बिन्दु हैं। यदि एक बिंदु $P \left( x ^{\prime}, y ^{\prime}\right)$ इस प्रकार है कि $\triangle PAB$ का क्षेत्रफल $=5$ वर्ग इकाई है तथा यह रेखा $3 x + y -4 \lambda=0$ पर स्थित है, तो $\lambda$ का एक मान है 

  • [JEE MAIN 2020]

रेखाओं $x = 0,$ $y = 0,$$x = 1$ व $y = 1$ द्वारा बने वर्ग के विकर्णों के समीकरण हैं

माना $\alpha, \beta, \gamma, \delta \in \mathrm{Z}$ हैं तथा माना एक समांतर चतुर्भज $\mathrm{ABCD}$ के शीर्ष $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ तथा $\mathrm{D}(1,2)$ हैं। यदि $\mathrm{AB}=\sqrt{10}$ है तथा बिन्दु $\mathrm{A}$ और $\mathrm{C}$, रेखा $3 \mathrm{y}=2 \mathrm{x}+1$ पर है, तो $2(\alpha+\beta+\gamma+\delta)$ बराबर है।

  • [JEE MAIN 2024]

रेखाओं $xy = 0$ व $x + y = 1$ द्वारा बने त्रिभुज का लम्बकेन्द्र है

  • [IIT 1995]