यदि सरल रेखा $3x + 4y + 15 = 0$ पर कोई दो बिन्दु $A$ व $B$ इस प्रकार हों कि $OA = OB = 9$ इकाई, तो त्रिभुज $OAB$ का क्षेत्रफल है
$18 sq.$ units
$18\sqrt 2 sq.$units
18/$\sqrt 2 sq.$ units
इनमें से कोई नहीं
त्रिभुज $A B C$ की भुजा $A B$ तथा $A C$ पर बिंदु $X, Y$ क्रमश: इस प्रकार स्थापित हैं कि रेखाखंड $X Y$ और $B C$ समांतर हैं । निम्नलिखित में से कौन से कथन हमेशा उचित हैं? (यहाँ त्रिभुज $P Q R$ का क्षेत्रफल $[P Q R]$ से निर्देशित किया गया है)
$(I)$ $[B C X]=[B C Y]$
$(II)$ $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
यदि एक समांतर चतुर्भु ज $ABDC$ के बिन्दुओं $A , B$ तथा $C$ के निर्देशांक क्रमशः $(1,2),(3,4)$ तथा $(2,5)$ हैं, तो विकर्ण $AD$ का समीकरण है
माना एक त्रिभुज, जिसके शीर्ष $A ( a , 3), B ( b , 5)$ तथा $C ( a , b ), ab > 0$ हैं, का परिकेन्द्र $P (1,1)$ है। यदि रेखा $AP$, रेखा $BC$ के बिन्दु $Q \left( k _1, k _2\right)$ पर काटती है, तो $k _1+ k _2$ बराबर है:
यदि एक रेखा $L$, रेखा $5 x-y=1$ पर लंबवत है तथा रेखा $L$ तथा निर्देशांक अक्षों द्वारा बनी त्रिभुज का क्षेत्रफल $5$ है, तो रेखा $L$ की रेखा $x+5 y=0$ से दूरी है
एक सरल रेखा $ax + by + c = 0$ सदैव बिन्दु $(1, -2)$ से गुजरती है, तब $a, b, c$ होंगे