त्रिभुज $ABC$ का आधार $BC$ बिन्दु $(p, q)$ पर समद्विभाजित होता है तथा $AB$ व $AC$ के समीकरण क्रमश: $x + y + 3 = 0$ व $qx + py = 1$ हैं, तो $A$ से जाने वाली वाली माध्यिका का समीकरण है
$(2pq - 1)(px + qy - 1) = ({p^2} + {q^2} - 1)(qx + py - 1)$
$({p^2} + {q^2} - 1)(px + qy - 1) = (2p - 1)(qx + py - 1)$
$(pq - 1)(px + qy - 1) = ({p^2} + {q^2} - 1)(qx + py - 1)$
इनमें से कोई नहीं
माना एक समांतर चतुर्भुज की दो संलग्न भुजाओं के समीकरण $2 x-3 y=-23$ तथा $5 x+4 y=23$ हैं। यदि इसके एक विकर्ण $\mathrm{AC}$ का समीकरण $3 x+7 y=23$ है तथा $A$ की दूसरे विकर्ण से दूरी $d$ है, तो $50 \mathrm{~d}^2$ बराबर है:
एक बिन्दु इस प्रकार गति करता है, कि इस बिन्दु तथा बिन्दुओं $(1, 5)$ तथा $ (3, -7)$ से बने त्रिभुज का क्षेत्रफल $21$ वर्ग इकाई है, तब बिन्दु का बिन्दुपथ होगा
$ax \pm by \pm c = 0$ से बने समान्तर चतुभ्र्ज का क्षेत्रफल है
यदि त्रिभुज $ABC$ के शीर्षों के निर्देशांक क्रमश: $(-1, 6)$,$(-3,-9)$, तथा $(5, -8)$ हों तो $C$ से गुजरने वाली माध्यिका का समीकरण होगा
कार्तीय तल का मूल बिन्दु $O$ है । आपको वास्तविक संख्यायें $b, d > 0$ दी गई हैं |रेखाखण्ड $O P$, जहां $P(r, \theta)$ एक चर बिंदु है, रेखा $r \sin \theta=b$ को बिन्दु $Q$ पर इस प्रकार काटता है कि $P Q=d \mid$ तब ऐसे सभी $P(r, \theta)$ बिन्दुओं का बिंदुपथ होगा: