The base $BC$ of a triangle $ABC$ is bisected at the point $(p, q)$ and the equations to the sides $AB$ and $AC$ are respectively $px+qy= 1$ and $qx + py = 1.$ Then the equation to the median through $A$ is

  • A

    $(2pq - 1)(px + qy - 1) = ({p^2} + {q^2} - 1)(qx + py - 1)$

  • B

    $({p^2} + {q^2} - 1)(px + qy - 1) = (2p - 1)(qx + py - 1)$

  • C

    $(pq - 1)(px + qy - 1) = ({p^2} + {q^2} - 1)(qx + py - 1)$

  • D

    None of these

Similar Questions

The locus of the orthocentre of the triangle formed by the lines

$ (1+p) x-p y+p(1+p)=0, $

$ (1+q) x-q y+q(1+q)=0,$

and $y=0$, where $p \neq q$, is

  • [IIT 2009]

Let $O=(0,0)$ : let $A$ and $B$ be points respectively on $X$-axis and $Y$-axis such that $\angle O B A=60^{\circ}$. Let $D$ be a point in the first quadrant such that $A D$ is an equilateral triangle. Then, the slope of $D B$ is

  • [KVPY 2016]

The locus of a point $P$ which divides the line joining $(1, 0)$ and $(2\cos \theta ,2\sin \theta )$ internally in the ratio $2 : 3$ for all $\theta $, is a

  • [IIT 1986]

The co-ordinates of three points $A(-4, 0) ; B(2, 1)$ and $C(3, 1)$ determine the vertices of an equilateral trapezium $ABCD$ . The co-ordinates of the vertex $D$ are :

Consider the lines $L_1$ and $L_2$ defined by

$L _1: x \sqrt{2}+ y -1=0$ and $L _2: x \sqrt{2}- y +1=0$

For a fixed constant $\lambda$, let $C$ be the locus of a point $P$ such that the product of the distance of $P$ from $L_1$ and the distance of $P$ from $L_2$ is $\lambda^2$. The line $y=2 x+1$ meets $C$ at two points $R$ and $S$, where the distance between $R$ and $S$ is $\sqrt{270}$.

Let the perpendicular bisector of $RS$ meet $C$ at two distinct points $R ^{\prime}$ and $S ^{\prime}$. Let $D$ be the square of the distance between $R ^{\prime}$ and $S ^{\prime}$.

($1$) The value of $\lambda^2$ is

($2$) The value of $D$ is

  • [IIT 2021]