$\frac{{13 - 5i}}{{4 - 9i}}$ નો કોણાંક મેળવો.
$\frac{\pi }{3}$
$\frac{\pi }{4}$
$\frac{\pi }{5}$
$\frac{\pi }{6}$
સંકર સંખ્યાનો માનાંક અને કોણાંક શોધો : $\frac{1+i}{1-i}$
$a \in C$ માટે,ધારોકે $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ અને $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$.તો આપેલા બે વિધાનો
$(S1)$ : જો $\operatorname{Re}(a), \operatorname{Im}(a) > 0$, હોય તો ગણ $A$ તમામ વાસ્તવિક સંખ્યાઆ સમાવે છે, અને
$(S2)$ : જો $\operatorname{Re}(a), \operatorname{Im}(a) < 0$, હોય તો ગણ $B$ તમામ વાસ્તવિક સંખ્યાઓ સમાવે છે.
જો $a = lm\left( {\frac{{1 + {z^2}}}{{2iz}}} \right)$,જ્યાં $z$ એ શૂન્યેતર સંકર સંખ્યા છે.તો $A = \{ a:\left| z \right| = 1\,and\,z \ne \pm 1\} $ નો ઉકેલગણ મેળવો.
સંકર સંખ્યા $z$ અને બીજી સંકર સંખ્યાનો સરવાળો $\pi $ હોય તો બીજી સંકર સંખ્યા . . . . થાય
જો $z$ અને $w$ બે સંકર સંખ્યા છે કે જેથી $|z|\, = \,|w|$ અને $arg\,z + arg\,w = \pi $. તો $z$ મેળવો.