The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is
$\frac{\pi }{3}$
$\frac{\pi }{4}$
$\frac{\pi }{5}$
$\frac{\pi }{6}$
If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$
Let $z =1+ i$ and $z _1=\frac{1+ i \overline{ z }}{\overline{ z }(1- z )+\frac{1}{ z }}$. Then $\frac{12}{\pi}$ $\arg \left(z_1\right)$ is equal to $..........$.
Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to
If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then