The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is

  • [AIPMT 2005]
  • [AIPMT 1991]
  • A

    ${A^2}B$

  • B

    Zero

  • C

    ${A^2}B\sin \theta $

  • D

    ${A^2}B\cos \theta $

Similar Questions

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

The angle between two vectors $ - 2\hat i + 3\hat j + \hat k$ and $\hat i + 2\hat j - 4\hat k$ is ....... $^o$

If $A$ is a unit vector in a given direction, then the value of $\hat{ A } \cdot \frac{d \hat{ A }}{d t}$ is

The area of the parallelogram determined by $A =2 \hat{ i }+\hat{ j }-3 \hat{ k }$ and $B =12 \hat{ j }-2 \hat{ k }$ is approximately

A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be