The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

  • A
    $x = 0$, $y = \frac{2}{3}$
  • B
    $x =  - \frac{{36}}{5},y = \frac{5}{3}$
  • C
    $x =  - \frac{{15}}{3},y = \frac{{23}}{5}$
  • D
    $x = \frac{{36}}{5},y = \frac{{15}}{4}$

Similar Questions

The modulus of the vector product of two vectors is $\frac{1}{\sqrt{3}}$ times their scalar product. The angle between vectors is

A vector $\overrightarrow A $ points vertically upward and $\overrightarrow B $points towards north. The vector product $\overrightarrow A \times \overrightarrow B $ is

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec  B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ $(i)$ $\theta = \,{0^o}$
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ $(ii)$ $\theta = \,{90^o}$
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ $(iii)$ $\theta = \,{180^o}$
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ $(iv)$ $\theta = \,{60^o}$

Which of the following is not true ? If $\overrightarrow A = 3\hat i + 4\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ where $ A$ and $B$ are the magnitudes of $\overrightarrow A $ and $\overrightarrow B $

The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is

  • [AIPMT 2005]