A vector ${\overrightarrow F _1}$is along the positive $X-$axis. If its vector product with another vector ${\overrightarrow F _2}$ is zero then ${\overrightarrow F _2}$ could be

  • A

    $4\hat j$

  • B

    $ - (\hat i + \hat j)$

  • C

    $(\hat j + \hat k)$

  • D

    $( - 4\hat i)$

Similar Questions

If $\vec A,\vec B$ and $\vec C$ are vectors having a unit magnitude. If $\vec A + \vec B + \vec C = \vec 0$ then $\vec A.\vec B + \vec B.\vec C + \vec C.\vec A$ will be 

A vector $\vec{A}$ points towards North and vector $\vec{B}$ points upwards then $\vec{A} \times \vec{B}$ points towards ...........

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........

What is the unit vector perpendicular to the following vectors $2\hat i + 2\hat j - \hat k$ and $6\hat i - 3\hat j + 2\hat k$

The values of $x$ and $y$ for which vectors $A =(6 \hat{ i }+x \hat{ j }-2 \hat{ k })$ and $B =(5 \hat{ i }+6 \hat{ j }-y \hat{ k })$ may be parallel are