$\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$का कोणांक है
$\frac{\pi }{3}$
$ - \frac{\pi }{3}$
$\frac{\pi }{6}$
$ - \frac{\pi }{6}$
यदि $x+i y=\frac{a+i b}{a-i b}$ है तो, सिद्ध कीजिए कि $x^{2}+y^{2}=1$
यदि$z$ एक सम्मिश्र संख्या है, तब सदिश $z$ तथा $ - iz$ के मध्य कोण होगा
माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z + i\overline w = 0$ और $arg\,\,zw = \pi $, तब $arg\ z$ बराबर है
यदि ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है
माना $a \neq b$ दो शून्येत्तर वास्तविक संख्याएँ है। तो समुच्चय
$X=\left\{z \in C: \operatorname{Re}\left(a z^2+b z\right)=a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$
में अवयवों की संख्या है