The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
$\frac{\pi }{3}$
$ - \frac{\pi }{3}$
$\frac{\pi }{6}$
$ - \frac{\pi }{6}$
$z_1$ and $z_2$ are two complex numbers such that $|z_1 + z_2|$ = $1$ and $\left| {z_1^2 + z_2^2} \right|$ = $25$ , then minimum value of $\left| {z_1^3 + z_2^3} \right|$ is
If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.
Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
If $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ and $|2z_1 +3z_2 +4z_3| =9$ ,then value of $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ is equal to:-
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to