સમગુણોત્તર શ્રેણીના પાંચમા, આઠમાં અને અગિયારમાં પદ અનુક્રમે $p, q$ અને $s$ હોય, તો બતાવો કે $q^{2}=p s$
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$ According to the given condition,
$a_{5}=a r^{5-1}=a r^{4}=p$ .........$(1)$
$a_{8}=a r^{8-1}=a r^{7}=q$ .........$(2)$
$a_{11}=a r^{11-1}=a r^{10}=s$ .........$(3)$
Dividing equation $(2)$ by $(1),$ we obtain
$\frac{a r^{7}}{a r^{4}}=\frac{q}{p}$
$r^{3}=\frac{q}{p}$ .........$(4)$
Dividing equation $(3)$ by $(2),$ we obtain
$\frac{a r^{10}}{a r^{7}}=\frac{s}{q}$
$\Rightarrow r^{3}=\frac{s}{q}$ .......$(5)$
Equating the values of $r^{3}$ obtained in $(4)$ and $(5),$ we obtain
$\frac{q}{p}=\frac{s}{q}$
$\Rightarrow q^{2}=p s$
Thus, the given result is proved.
શ્નેણી $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .........$ $n$ પદનો સરવાળો મેળવો.
જેનાં પ્રથમ બે પદોનો સરવાળો $-4$ હોય અને પાંચમું પદ ત્રીજા પદથી ચાર ગણુ હોય એવી સમગુણોત્તર શ્રેણી શોધો.
ઘન પદ ધરાવતી ગુણોત્તર શ્રેણીમાં દરેક પદ તેના પછી આવતા બે પદનો સરવાળો હોય તો તે શ્રેણીનો સામાન્ય ગુણોત્તર =.......
નીચેની શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો :
$5+55+555+\ldots$
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : ${{x^3},{x^5},{x^7}, \ldots }$ પ્રથમ $n$ પદ