નીચેની શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો શોધો :

$5+55+555+\ldots$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$5+55+555+\ldots$

Let $S_{n}=5+55+555+\ldots .$ to $n$ terms

$=\frac{5}{9}[9+99+999+\ldots \ldots \text { to } n \text { terms }]$

$=\frac{5}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text { to } n \text { terms }\right]$

$=\frac{5}{9}[\left(10+10^{2}+10^{3}+\text { to } n \text { terms }\right)$

$-(1+1+\ldots \text { to } n \text { terms })]$

$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$

$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$

$=\frac{50}{81}\left(10^{n}-1\right)-\frac{5 n}{9}$

Similar Questions

એક સમગુણોત્તર શ્રેણીનાં ચોથા, સાતમા અને દસમા પદ અનુક્રમે $a, b, c$ હોય, તો.........

શ્રેણી $1, 2, 2^2, ….2^n$ નો ગુણોત્તર મધ્યક...... છે.

$(1 - x) (1 - 2x) (1 - 2^2. x) (1 - 2^3. x) …. (1 - 2^{15}. x) $ ના ગુણાકારમાં $x^{15} $ નો સહગુણક મેળવો.

જો $a$ અને $b$ વચ્ચે $n$ સમગુણોત્તર મધ્યકો હોય તો તેનો સામાન્ય ગુણોત્તર કેટલો થાય ?

સમગુણોત્તર શ્રેણી $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$ નું $20$ મું પદ તથા $n$મું પદ શોધો.