શ્નેણી $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .........$ $n$ પદનો સરવાળો મેળવો.
${2^n} - n - 1$
$1 - {2^{ - n}}$
$n + {2^{ - n}} - 1$
${2^n} - 1$
જો ${a_1},{a_2}...,{a_{10}}$ એ સમગુણોત્તર શ્રેણીના પદો હોય અને $\frac{{{a_3}}}{{{a_1}}} = 25$ થાય તો $\frac {{{a_9}}}{{{a_{ 5}}}}$ ની કિમત મેળવો.
ધારો કે $a, a r, a r^2$, ......... એક સમગુણોતર શ્રેણી છે. જો $\sum_{n=0}^{\infty} a r^n=57$ અને $\sum_{n=0}^{\infty} a^3 r^{3 n}=9747$ હોય, તો $a+18 r=$ ..........
$0.\mathop {423}\limits^{\,\,\,\, \bullet \,\,\, \bullet \,} = $
જો ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ અને $B_n \,= 1 - A_n$ હોય તો $p$ ની ન્યુનત્તમ અયુગ્મ કિમત મેળવો કે જેથી બધા $n \geq p$ ${B_n} > {A_n}$ માટે થાય
જો $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , હોય તો $x$ ની કિમત મેળવો