किसी गुणोत्तर श्रेणी का $5$ वाँ, $8$ वाँ तथा $11$ वाँ पद क्रमशः $p, q$ तथा $s$ हैं तो दिखाइए कि $q^{2}=p s$.
Let $a$ be the first term and $r$ be the common ratio of the $G.P.$ According to the given condition,
$a_{5}=a r^{5-1}=a r^{4}=p$ .........$(1)$
$a_{8}=a r^{8-1}=a r^{7}=q$ .........$(2)$
$a_{11}=a r^{11-1}=a r^{10}=s$ .........$(3)$
Dividing equation $(2)$ by $(1),$ we obtain
$\frac{a r^{7}}{a r^{4}}=\frac{q}{p}$
$r^{3}=\frac{q}{p}$ .........$(4)$
Dividing equation $(3)$ by $(2),$ we obtain
$\frac{a r^{10}}{a r^{7}}=\frac{s}{q}$
$\Rightarrow r^{3}=\frac{s}{q}$ .......$(5)$
Equating the values of $r^{3}$ obtained in $(4)$ and $(5),$ we obtain
$\frac{q}{p}=\frac{s}{q}$
$\Rightarrow q^{2}=p s$
Thus, the given result is proved.
अनुक्रम $2,4,8,16,32$ तथा $128,32,8,2, \frac{1}{2}$ के संगत पदों के गुणनफल से बने अनुक्रम का
योगफल ज्ञात कीजिए।
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से $9$ अधिक हो तथा दूसरा पद चौथे पद से $18$ अधिक हो।
गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
मान ज्ञात कीजिए $\sum_{k=1}^{11}\left(2+3^{k}\right)$
$2$ और $32$ के बीच $3$ गुणोत्तर माध्य हैं, तो तीसरे गुणोत्तर माध्य का मान होगा
$\overline {0.037} $ का मान, जहाँ $\overline {.037} $ संख्या $0.037037037........$ को निरूपित करता है