मूल बिन्दु से वृत्त ${x^2} + {y^2} - 2ax - 2by + {b^2} = 0$ पर खींची गई स्पर्श रेखाएँ परस्पर लम्बवत् हैं, यदि

  • A

    $a - b = 1$

  • B

    $a + b = 1$

  • C

    ${a^2} = {b^2}$

  • D

    ${a^2} + {b^2} = 1$

Similar Questions

स्पर्श-रेखा PT वत्त $x^2+y^2=4$ को बिन्दु $P(\sqrt{3}, 1)$ पर स्पर्श करती है। सरल रेखा $L, P T$ के लम्बवत् है और वत्त $(x-3)^2+y^2=1$ की स्पर्श-रेखा है।

$1.$ दोनों वत्तो की एक उभयनिष्ठ स्पर्श-रेखा (common tangent) निम्न है

$(A)$ $x=4$ $(B)$ $y=2$ $(C)$ $x+\sqrt{3} y=4$ $(D)$ $x+2 \sqrt{2} y=6$

$2.$ $L$ का एक सम्भावित समीकरण निम्न है -

$(A)$ $x-\sqrt{3} y=1$ $(B)$ $x+\sqrt{3} y=1$ $(C)$ $x-\sqrt{3} y=-1$ $(D)$ $x+\sqrt{3} y=5$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2012]

यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा

  • [JEE MAIN 2019]

वृत्त ${x^2} + {y^2} - 6x + 4y = 12$ की उन स्पर्श रेखाओं, जो रेखा $4x + 3y + 5 = 0$ के समान्तर हो, के समीकरण हैं  

रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है

माना वृत्त $x ^2+ y ^2-4 x +3=0$ के दो बिंदुओं $A$ तथा $B$ पर स्पर्श रेखाएँ $O (0,0)$ पर मिलती हैं। तब त्रिभुज $OAB$ का क्षेत्रफल है

  • [JEE MAIN 2022]