ધારો કે પ્રયોગ $A $ ના $100$ અવલોકન $ 101,102, . . .,200 $ અને પ્રયોગ $B $ ના $100$ અવલોકન $151,152, . . .,250$ છે જો $V_A$ અને $V_B$ એ આપેલ પ્રયોગ ના વિચરણ છે તો $V_A / V_B$ મેળવો.
$1$
$\frac{9}{4}$
$\frac{4}{9}$
$\frac{2}{3}$
પ્રથમ $n $ પ્રાકૃતિક સંખ્યાઓના વિચરણનો ચલનાંક શોધો.
$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ?
$y_1$ , $y_2$ , $y_3$ ,..... $y_n$ એ $n$ અવલોકનો છે ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ જ્યાં $l$ , $k$ એ અચળો છે જો $y_i's$ નો મધ્યક $48$ અને તેમનો પ્રમાણિત વિચલન $12$ અને $w_i's$ નો મધ્યક $55$ અને પ્રમાણિત વિચલન $15$ હોય તો $l$ અને $k$ ની કિમત મેળવો .
પાંચ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $5$ અને $9.20$ છે જો તેમાંથી ત્રણ અવલોકનો $1, 3$ અને $8$ હોય તો બાકીના અવલોકનોનો ગુણોત્તર મેળવો.
નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
વર્ગ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |