माना $\sum_{\mathrm{r}=0}^{2023} \mathrm{r}^2{ }^{2023} \mathrm{C}_{\mathrm{r}}=2023 \times \alpha \times 2^{2022}$ है। तो $\alpha$ का मान है___________.
$1011$
$1013$
$1012$
$1014$
${({x^2} + x - 3)^{319}}$ के प्रसार में सभी गुणांकों का योग है
यदि $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$ के प्रसार में पदों की संख्या $28$ है, तो इस प्रसार में आने वाले सभी पदों के गुणांकों का योग है:
${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा
यदि $\sum_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ जहाँ $\alpha \in R$, तब $16 \alpha$ का मान होगा ?
यदि ${(x - 2y + 3z)^n}$ के प्रसार में गुणांकों का योग $128$ हो, तो ${(1 + x)^n}$ के प्रसार में सबसे बड़ा गुणांक है