ધારોકે $\sum \limits_{r=0}^{2023} r^{2023} C_r=2023 \times \alpha \times 2^{2022}$, તો $\alpha$ નું મૂલ્ય $............$ છે.

  • [JEE MAIN 2023]
  • A

    $1011$

  • B

    $1013$

  • C

    $1012$

  • D

    $1014$

Similar Questions

 $4 \{^nC_1 + 4 . ^nC_2 + 4^2 . ^nC_3 + ...... + 4^{n - 1}\}$ ની કિમત મેળવો 

જો $\sum_{ r =0}^5 \frac{{ }^{11} C _{2 r +1}}{2 r +2}=\frac{ m }{ n }, \operatorname{gcd}( m , n )=1$,હોય તો  $m - n$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

જો ${}^{21}{C_1} + 3.{}^{21}{C_3} + 5.{}^{21}{C_5} + ......19{}^{21}{C_{19}} + 21.{}^{21}{C_{21}} = k$ હોય તો $k$ નો અવિભાજય અવયવ મેળવો 

જો ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$ હોય તો $k$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, તો ${C_0} + {C_2} + {C_4} + {C_6} + .....$ = . . .