$(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ નાં વિસ્તરણમાં $x^{256}$ નો સહગુણક મેળવો.
જો $x + y = 1$, તો $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ = . . .
જો ${(\alpha {x^2} - 2x + 1)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળોએ ${(x - \alpha y)^{35}}$ ના વિસ્તરણમાં સહગુણકોનો સરવાળો બરાબર થાય છે , તો $\alpha $=
જો $(x+y)^{n}$ નાં વિસ્તરણમાં બધાજ સહગુણકોનો સરવાળો $4096,$ હોય તો મહતમ સહગુણક મેળવો.
ધારો કે $m, n \in N$ અને ગુ.સા.અ. $\operatorname{gcd}(2, n)=1$. જો $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ તો $n + m=.......$
(અહીં $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$