मान लीजिए कि $m , n$ धनात्मक पूर्णांक $(positive\,integers)$ इस प्रकार है कि $6^m+2^{m+n} 3^m+2^n=332 . m^2+m n+n^2$ व्यंजक $(expression)$, का मान क्या होगा ?
$7$
$13$
$19$
$21$
$2^x+3^y=5^{x y}$ को संतुष्ट करने वाले घनात्मक पूर्णांकों को क्रमित युग्मों $(x, y)$ की संख्या है.
समीकरण |${x^2}$ + 4x + 3| + 2x + 5 = 0 के वास्तविक हलों की संख्या है
यदि समीकरण ${x^3} + px + q = 0$ के मूल $\alpha ,\beta $ और $\gamma $ हों तो ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ का मान होगा
यदि $x$ वास्तविक हेा तो समीकरण ${x^2} - 6x + 10$ का न्यूनतम मान होगा
इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है और $\{x\}=x-[x]$ | अंतराल $0 \leq x \leq 2015$ में समीकरण $[x]\{x\}=5$ के कितने शून्यक हैं ?