बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$(i)$ $\tan A$ का मान सदैव $1$ से कम होता है।
$(ii)$ कोण $A$ के किसी मान के लिए $\sec A =\frac{12}{5}$
Consider a $\triangle ABC ,$ right-angled at $B$.
$\tan A=\frac{\text { Side opposite to } \angle A }{\text { Side adjacent to } \angle A }$
$=\frac{12}{5}$
But $\frac{12}{5}>1$
$\therefore \tan A>1$
So, tan $A<1$ is not always true.
Hence, the given statement is false.
$(ii)$ $\sec A=\frac{12}{5}$
$\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }=\frac{12}{5}$
$\frac{A C}{A B}=\frac{12}{5}$
Let $AC$ be $12 k , AB$ will be $5 k ,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$(12 k)^{2}=(5 k)^{2}+ BC ^{2}$
$144 k^{2}=25 k^{2}+B C^{2}$
$BC ^{2}=119 k ^{2}$
$BC =10.9 k$
It can be observed that for given two sides $AC =12 k$ and $AB =5 k$,
BC should be such that,
$AC - AB < BC < AC + AB$
$12 k-5 k< BC <12 k+5 k$
$7 k< BC <17 k$
However, $BC =10.9 k$. Clearly, such a triangle is possible and hence, such value of $\sec A$ is Possible.
Hence,the given statement is false.
मान निकालिए :
$\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
यदि $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ जहाँ $4 A$ एक न्यून कोण है, तो $A$ का मान ज्ञात कीजिए।
आकृति में, $\tan P - cot R$ का मान ज्ञात कीजिए।
निम्नलिखित का मान निकालिए:
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
$\cot 85^{\circ}+\cos 75^{\circ}$ को $0^{\circ}$ और $45^{\circ}$ के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।