નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :

$(i)$ $\tan$ $A$ નું મૂલ્ય હંમેશાં $1$ કરતાં ઓછું હોય છે.

$(ii)$ $A$ માપવાળા કોઈક ખૂણા માટે $\sec A=\frac{12}{5}$ સત્ય છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider a $\triangle ABC ,$ right-angled at $B$.

$\tan A=\frac{\text { Side opposite to } \angle A }{\text { Side adjacent to } \angle A }$

$=\frac{12}{5}$

But $\frac{12}{5}>1$

$\therefore \tan A>1$

So, tan $A<1$ is not always true.

Hence, the given statement is false.

$(ii)$ $\sec A=\frac{12}{5}$

$\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }=\frac{12}{5}$

$\frac{A C}{A B}=\frac{12}{5}$

Let $AC$ be $12 k , AB$ will be $5 k ,$ where $k$ is a positive integer.

Applying Pythagoras theorem in $\triangle ABC ,$ we obtain

$AC ^{2}= AB ^{2}+ BC ^{2}$

$(12 k)^{2}=(5 k)^{2}+ BC ^{2}$

$144 k^{2}=25 k^{2}+B C^{2}$

$BC ^{2}=119 k ^{2}$

$BC =10.9 k$

It can be observed that for given two sides $AC =12 k$ and $AB =5 k$,

BC should be such that,

$AC - AB < BC < AC + AB$

$12 k-5 k< BC <12 k+5 k$

$7 k< BC <17 k$

However, $BC =10.9 k$. Clearly, such a triangle is possible and hence, such value of $\sec A$ is Possible.

Hence,the given statement is false.

1043-s16

Similar Questions

જેમાં $\angle C$ કાટખૂણો હોય, તેવો કોઈ $\triangle ACB$ લો. $AB = 29$ એકમ, $BC = 21$ એકમ અને $\angle ABC =\theta$ (જુઓ આકૃતિ) હોય, તો નિમ્નલિખિત મૂલ્ય શોધો:

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$

$\triangle$ $ABC ,$ માં $\angle B$ કાટખૂણો છે. જો $\tan A =\frac{1}{\sqrt{3}},$ હોય, તો નિમ્નલિખિત મૂલ્ય શોધો.

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$

$\triangle ABC ,$માં $\angle B$ કાટખૂણો છે. $AB = 24$ સેમી, $BC = 7$ સેમી હોય, તો નીચેના ગુણોત્તરોનું મૂલ્ય શોધો :

$(i)$ $\sin A, \cos A$

$(ii)$ $\sin C, \cos C$

નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :

$(i)$ ખૂણા $A$ ના $cosecant$ને સંક્ષિપ્તમાં $\cos A$ તરીકે લખાય છે. 

$(ii)$ $\cot$ અને $A$ નો ગુણાકાર $\cot A$ છે.

$(iii)$ $\theta$ માપવાળા કોઈ એક ખૂણા માટે $\sin \theta=\frac{4}{3}$ શક્ય છે.

કિંમત શોધો :

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$